## The homotopy type of certain laminated manifolds

HTML articles powered by AMS MathViewer

- by R. J. Daverman and F. C. Tinsley
- Proc. Amer. Math. Soc.
**96**(1986), 703-708 - DOI: https://doi.org/10.1090/S0002-9939-1986-0826506-1
- PDF | Request permission

## Abstract:

Let $M$ denote a connected $(n + 1)$-manifold $n \geqslant 5$. A lamination $G$ of $M$ is an use decomposition of $M$ into closed connected $n$-manifolds. Daverman has shown that the decomposition space $M/G$ is homeomorphic to a $1$-manifold possibly with boundary. If $M/G = {R^1}$, we prove that $M$ has the homotopy type of an $n$-manifold if and only if ${\prod _1}(M)$ is finitely presented. In the case that $M/G = {S^1}$ we use the above result to construct an approximate fibration $f:M \to {S^1}$. We then discuss the important interactions of this study with that of perfect subgroups of finitely presented groups.## References

- Kenneth S. Brown,
*Cohomology of groups*, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR**672956** - Robert Bieri and Ralph Strebel,
*Metabelian quotients of finitely presented soluble groups are finitely presented*, Homological group theory (Proc. Sympos., Durham, 1977) London Math. Soc. Lecture Note Ser., vol. 36, Cambridge Univ. Press, Cambridge-New York, 1979, pp. 231–234. MR**564426** - Marshall M. Cohen,
*A course in simple-homotopy theory*, Graduate Texts in Mathematics, Vol. 10, Springer-Verlag, New York-Berlin, 1973. MR**0362320** - R. J. Daverman,
*Decompositions of manifolds into codimension one submanifolds*, Compositio Math.**55**(1985), no. 2, 185–207. MR**795714**
—, - R. J. Daverman and F. C. Tinsley,
*Laminated decompositions involving a given submanifold*, Topology Appl.**20**(1985), no. 2, 107–119. MR**800841**, DOI 10.1016/0166-8641(85)90071-9
—, - J. F. P. Hudson,
*Piecewise linear topology*, W. A. Benjamin, Inc., New York-Amsterdam, 1969. University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees. MR**0248844** - L. S. Husch,
*Approximating approximate fibrations by fibrations*, Canadian J. Math.**29**(1977), no. 5, 897–913. MR**500990**, DOI 10.4153/CJM-1977-091-2
—, Lecture notes, Univ. of Tennessee.
- Robion C. Kirby and Laurence C. Siebenmann,
*Foundational essays on topological manifolds, smoothings, and triangulations*, Annals of Mathematics Studies, No. 88, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah. MR**0645390** - Daniel Quillen,
*Cohomology of groups*, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 47–51. MR**0488054** - C. P. Rourke and B. J. Sanderson,
*Introduction to piecewise-linear topology*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69, Springer-Verlag, New York-Heidelberg, 1972. MR**0350744** - T. Benny Rushing,
*Topological embeddings*, Pure and Applied Mathematics, Vol. 52, Academic Press, New York-London, 1973. MR**0348752**
L. C. Siebenmann, Ph.D thesis, Princeton Univ., 1965.
- Edwin H. Spanier,
*Algebraic topology*, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR**0210112** - C. T. C. Wall,
*Finiteness conditions for $\textrm {CW}$ complexes. II*, Proc. Roy. Soc. London Ser. A**295**(1966), 129–139. MR**211402**, DOI 10.1098/rspa.1966.0230
—(editor),

*Decompositions into submanifolds of fixed codimension*, manuscript.

*Laminations, finitely generated perfect groups, and acyclic maps*, preprint.

*Homological group theory*, Cambridge Univ. Press, London, 1979.

## Bibliographic Information

- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**96**(1986), 703-708 - MSC: Primary 57N15; Secondary 55P15
- DOI: https://doi.org/10.1090/S0002-9939-1986-0826506-1
- MathSciNet review: 826506